SHORT PAPER

Simple and stereoselective synthetic route to (E)-1-alkenyl sulfoxides via terminal alkynes† Ping Zhong^{a,b}, Meng-Ping Guo^{a,b} and Xian Huang^b

^aPermanent address: Department of Chemistry, Yichun Normal Institute, Yichun, 336000, P.R. China ^bDepartment of Chemistry, Zhejiang University, Xixi Campus, Hangzhou, 310028, P.R. China

Terminal alkynes 1 react with Cp₂Zr(H)Cl (Cp = η⁵-C_εH_ε) to give organozirconium (IV) complexes 2, which are trapped with sulfuryl chloride to afford (E)-1-alkenyl sulfoxides **3**.

Unsaturated sulfoxides have been widely used as building blocks in organic chemistry, $1-3$ but few convenient routes to such compounds are known. $4\frac{1}{2}$ For example, the Horner–Wittig procedure using carbonyl compounds and sulfinyl methylphosphonate anions leads to a mixture of (*E*) and (*Z*)-l-alkenyl sulfoxides.4 (*E*)- and (*Z*)-2-bromovinyl phenyl sulfoxides react with cuprates in a cross-coupling process giving the corresponding 1-alkenyl sulfoxides.⁵ Reaction of 1-alkynyl *p*-tolyl sulfoxides with lithium aluminium hydride in THF at -90 °C proceeds stereospecifically to give (E) -1-alkenyl sulfoxides.⁶ (E) -1-Alkenylmagnesium bromides react with chiral menthyl sulfinate esters to produce chiral (*E*)-1-alkenyl sulfoxides.7 But starting materials, such as (*E*)-2-bromovinyl phenyl sulfoxides and 1-alkynyl *p*-tolyl sulfoxides, are not easily available.

Recently, it was reported that alkenylzirconium(IV) complexes were transformed to other functional groups with a high level of stereochemical purity.⁸ For example, vinylzirconium complexes react with phenyltellurenyl iodide, arylselenenyl bromides or acid chloride readily to afford (*E*)-vinyl tellurides,⁹ (*E*)-vinyl selenides¹⁰ or (*E*)-vinyl ketones¹¹ respectively. But the sulfoxidation of vinylzirconium complexes has not been reported. Considering the electrophilicity of sulfuryl chloride, we attempted to treat them with the vinylzirconium **2** produced by hydrozirconation of terminal alkynes **1**. Experimental results show that, $Cp_2Zr(H)Cl¹²$ adds to terminal alkynes **1** in THF at room temperature stereospecifically with high regioselectivity to yield (*E*)-vinyl Zr(IV) complexes **2** which react with sulfuryl chloride at room temperature to afford (*E*)-1-alkenyl sulfoxides. The yields are good to excellent (see Table 1).

Scheme 1 R1 = Ph, n-C4H9, n-C5H11; R2 = Ph, 4-MeC6H4, $\mathtt{C_6H_4CH_2}$

All the compounds **3** were purified by preparative TLC on silica gel and fully characterized by NMR spectroscopy. The 1H NMR spectra of **3a**, ⁵ **3b**, ⁵ **3c**, ⁷ **3d**, ¹³ **3e**, ⁶ **3f**⁶ and **3g**¹⁴ were identical to those reported in the references cited. The stereochemistry of the vinyl sulfoxides was easily established, since 1H NMR of products (**3a–g**) give rise to a doublet at 6.10–6.80 (Hb) with a coupling constant *ca* 16 Hz typical of *trans* positioned protons, while that of *cis* isomers give rise to a doublet (H_h) with a coupling constant *ca* 11 Hz.

Vinyl sulfoxides **3** have recently emerged as valuable reagents for organic synthesis. For example, **3a** was treated with 5 equivalents of thionyl chloride in methylene chloride at – 5 to 25 °C for 30 min to produce α, ß-dichlorosulfide **4** in 88 % yield (**Scheme 2**).3

In conclusion, the hydrozirconation/sulfoxidation strategy provides a direct route to (*E*)-1-alkenyl sulfoxides from terminal alkynes. The method has some attractive advantages such as readily available starting materials, high yields, mild reaction conditions, straightforward access to exclusive (*E*)-configuration product and little pollution to environment.

Experimental

¹H NMR spectra were recorded on a AZ-300 spectrometer with TMS as internal standard. IR spectra were determined on PE-683 instrument as neat films. All reactions were carried out in pre-dried glassware (140 °C, 4h) and cooled under a stream of dry nitrogen. All solvents were dried, deoxygenated and redistilled before use.

General procedure for the synthesis of **3a–g**. To a dry 10 ml flask containing $Cp_2Zr(H)Cl$ (1.2 mmol) was injected THF (5 ml), followed by the addition of terminal alkynes (1.2 mmol) at room temperature. The mixture was stirred for 20 min to yield a clear solution. Then sulfuryl chlorides (1.5 mmol were added), and stirred for 2 h. The solvent was removed using rotary evaporator under reduced pressure. The residue was extracted with light petroleum ether $(3 \times 6$ ml) and filtered though a short plug of silica gel. After removal of solvent, the residue was purified by preparative TLC on silica gel eluting with hexane–AcOEt (95/5) to give **3**.

^{*} To receive any correspondence. E-mail: xhuang @mail.hz.zj.cn

[†] This is a Short Paper, there is therefore no corresponding material in *J Chem. Research (M).*

³a⁵: m.p. 60–61 °C (hexane/diethyl ether). IR (KBr): $v = 3080$, 3040, 1610, 1590, 1485, 1445, 985, 920; ¹H NMR (CDCl₃): d = 7.70–7.30 (m, llH), 6.80 (d, $J = 15.5$ Hz, lH); Calc. For C₁₄H₁₂OS: C, 73.65; H, 5.30. Found: C, 73.44, H, 5.37%.

69.45, H, 7.79%. **3c**7: oil. IR (film): ν = 3060, 2940, 2878, 1600, 1500, 1076, 1040; 940; ¹H NMR (CDCl₃): d = 7.60–7.10 (m, 5H), 6.45 (dt, $J = 15.5$ and 6.5 Hz, 1H), 6.13 (d, $J = 15.5$ Hz, 1H), 2.40–2.00 (m, 2H) 1.65–1.15 (m, 6H), 0.93 (br t, $J = 6$ Hz, 3H); Calc. for C₁₃H₁₈OS: C, 70.22; H, 8.16. Found: C, 70.02, H, 8.12%.

3d¹³: m.p. 34–35 °C (hexane/diethyl ether). IR (film): $v = 3055$, 2990, 2940, 2880, 1610, 1500, 1088, 1040, 970; ¹H NMR (CDCl₃): d = 7.80–7.00 (m, 10H), 6.73 (d, *J* = 15.5, 1H), 2.35 (s, 3H); Calc. for

C15H14OS: C, 74.34; H, 5.82. Found: C, 74.98, H, 5.80 %. **3e**6: oil. IR (film): ν = 3040, 2980, 2950, 2890, 1645, 1600, 1500, 1085, 1040; ¹H NMR (CDCl₂): d = 7.50–7.10 (AB q, $J = 8$ Hz, 4H), 6.40 (dt, $J = 15.5$ and 6 Hz, 1H), 6.10 (d, $J = 15.5$ Hz, 1H), 2.38 (s, 3H), 2.35–1.95 (m, 2 H), 1.60–1.10 (m, 4H), 0.90 (br t, *J* = 6 Hz, 3H); Calc. for $C_{13}H_{18}OS$: C, 70.22; H, 8.16. Found C, 70.33, H, 8.08%.

3f⁶: oil. IR (film): $v = 3060, 2980, 2880, 1635, 1605, 1495, 1090,$ 1035; ¹H NMR (CDCl₂) d = 7.70–7.15 (AB q, $J = 8$ Hz, 4H), 6.50 (dt, $J = 15.5$ and 6 Hz, 1H), 6.20 (d, $J = 15.5$ Hz, 1H), 2.40 (s, 3H), 2.40–2.00 (m, 2 H), 1.80–1.10 (m, 6H), 0.88 (br t, *J* = 6 Hz, 3H);

Calc. for C₁₄H₂₀OS: C, 71.14; H, 8.53; Found C, 71.26, H, 8.46 %.
3g¹⁴: m.p. 104–105 °C (methanol). IR (film): $v = 3080$, 1600, 1595, 1490, 1445, 980, 920; ¹H NMR (CDCl₃) d = 7.40–7.10 (m, 10H), 7.07 (d, *J* = 15.5 Hz, 1H), 6.70 (d, *J* = 15.5 Hz, 1H), 4.05 (s, 2H); Calc. for C₁₅H₁₄OS: C, 74.34; H, 5.82. Found: C, 74.49, H, 5.76%.

Synthesis of a*, ß-dichlorosulfide* 4°. Thionyl chloride (10 mmol) in methylene chloride (3 ml) were added to a methylene choride (5 ml) solution of **3a** (2 mmol) at –5 °C. The mixture was stirred at $-\frac{5}{5} - 25$ °C for 30 min. The workup gave 88 % a, β-dichlorosulfide **4**, which was purified by flash chromatography (hexane–AcOEt 95/5).

4. oil. IR (film): ν = 3085, 2945, 2880, 1595, 1480, 1150, 1080, 1040; ¹H NMR (CDCl₃): d = 7.60–7.00 (m, 10H), 5.35 (d, $J = 6$ Hz, 1H), 5.07 (d, $J = 6$ Hz, 1H); Calc. for C₁₄H₁₂Cl₂S: C, 59.37; H, 4.27. Found: C, 59.70, H, 4.19%.

Project 29772007 was supported by the National Nature Science Foundation of China and this work was also supported by the National Nature Science Foundation of Zhejiang Province.

Received 12 February 2000; accepted 8 March 2000 Paper 99/144

References

- 1 O. De Lucchi and L. Pasquato, *Tetrahedron*, 1988, **44**, 6755.
- 2 G. Tsuchihashi, S. Mitamura and K. Ogura, *Tetrahedron Lett*., 1976, 855.
- 3 G. H. Posner, E. Asirvatham and S.F. Ali, *J. Chem. Soc., Chem. Commun*., 1985, 542.
- 4 M. Mikolajczyk, S. Grzejszczak, W. Midura and A. Zatorski, *Synthesis*, 1976, 396.
- 5 C. Cardellicchio, V. Fiandanese and F. Naso, *J. Org. Chem*., 1992, **57**, 1718.
- 6 H. Kosugi, M. Kitaoka, K. Tagami, A. Takahashi and H. Uda, *J. Org. Chem*., 1987, **52**, 1078.
- 7 G. H. Posner and P.–W. Tang, *J. Org. Chem*., 1978, **43**, 4131.
- 8 P. Wipf and H. Jahn, *Tetrahedron*, 1996, **52**, 12853.
- 9 J. W. Sung, C.–W. Lee and D. Y. Oh, *Tetrehedron Lett*., 1995, **36**, 1503.
- 10 X. Huang and L.–S. Zhu, *J. Chem. Soc., Perkin Trans*. 1, 1996, 767.
- 11 P. Wipf and W. Xu, *Synlett*, 1992, 718.
- 12 S. L. Buchwald, S. J. LaMaire, R. B. Nielsen, B. T. Watson and S. M. King, *Tetrahedron Lett*., 1987, **28**, 3895.
- 13 R. Annunziata and M. Cinquini, *J. Chem. Soc., Perkin Trans. 1*, 1979, 1684.
- 14 T. Kageyama, *Synthesis*, 1983, 815.